American Water Works Association Spring 2003 Conference

Seawater Desalination for the City of Long Beach

Kevin L. Wattier, General Manager Long Beach Water Department June 18, 2003

Presentation Outline

- Long Beach Overview
- Planning Approach
- Water Quality Concerns
- Conclusion

Presentation Outline

- Long Beach Overview
- Planning Approach
- Water Quality Concerns
- Conclusion

Long Beach Water Department

- California's 5th most populous city (480,000 people)
- 70,000 AF of drinking water per year
- 5,500 AF of reclaimed water per year
- Operate largest GW treatment plant in US
- 912 miles of drinking water lines
- 763 miles of sewer lines

Long Beach Water Department

6%: Recycled Water

14%: Conservation

80%: Drinking Water

-46% LB Groundwater

-54% Imported

Imported Water Supply

Future Reliability

- Very little population growth
- Expansion of recycled water and water conservation
- Seawaterdesalination ==>necessary

supplement
City's imported
drinking water supply

Presentation Outline

- Long Beach Overview
- Planning Approach
- Water Quality Concerns
- Conclusion

Planning: Integration

	"Traditional"	Community Based
Plant Size	•15 to 50+ MGD	•5 to 15 MGD
Source Water	•Power plant cooling water	•May be independent
Brine Disposal	•Large volumes (combine with cooling water discharge)	•Smaller volumes = additional options
Distribution Infrastructure	 Regional pipelines and pump stations (possible wheeling costs) 	•Existing retail distribution system
Control/Own	•Conform with power plant pumping schedule	•Independent control

plant pumping schedule

Planning: Process Development

Patent pending 2-staged process

- Energy savings
 - Lower pressure requirements ==> Lower energy consumption
- Quality protection
 - ◆ Two physical barriers 10

Planning: Program Development

A 3-Phased Seawater Desalination Program

- Pilot Plant (continuing)
- Prototype (currently in design)
- 3 Production Plant (~2010)

Phase 1: Pilot Plant

- -9,000 gpd Pilot Plant
- -In operation since 2001
- -Applied research, 2-stage nanofiltration
 - * Energy consumption
 - * Water quality
 - * Optimum configuration
 - * Etc.

Phase 2: Prototype Plant

- 300,000 gpd (product water) Prototype Plant
- Partnership:USBR & LADWP
- Develop accurate information on capital and operating costs
- Develop information needed for permitting large-scale desalter
- Optimize Asst. General Manager Diem Vuong's 2-stage Nanofiltration process
- Refine Community-based desalination model

Phase 2: Prototype Plant Site

Phase 3: Potential Locations

Planning: Schedule

Presentation Outline

- Long Beach Overview
- Planning Approach
- Water Quality Concerns
- Conclusion

Water Quality Concerns

Standard operating conditions:

Raw Water

Permeate

TDS

 $\sim 34,500 \text{ mg/L}$

 $\sim 150 \text{ mg/L}$

Bromide

 $\sim 62 \text{ mg/L}$

0.4 - 0.6 mg/L

Boron: Background

- Typically < 1 mg/L in surface waters
- Naturally occurring in seawater (~4.5 mg/L)
- Toxic to some common trees (0.5 1.0 mg/L)
- Show reproductive health effect in animals
- CDHS established an Action Level at 1 mg/L
- No USEPA "MCL" but is on EPA radar
- WHO guideline at 0.3 mg/L (original)
- WHO revised guideline to 0.5 (treatment limitation)
- Difficult to remove by membranes

Boron Removal

- Traditional single-pass SWRO achieves 40% -60% rejection
- LBWD's NF2 Process

Stage 1 Rejection ~ 20%

Stage 2 Rejection ~ 35.1%

Overall Rejection ~ 48%

Boron Removal Strategy

 Boron rejection can be improved by increasing pH

Boron Removal Results

Boron Removal Results (cont.)

Presentation Outline

- Long Beach Overview
- Planning Approach
- Water Quality Concerns
- Conclusion

Conclusions

Water Supply

Strong dependence on imported water. Need to improve reliability

Planning

- Community based model
- Using a 3-phased program to develop desalination

Water Quality Strategy

- General WQ parameters consistent with singlepass SWRO
- Verified cost efficient boron removal strategy that is unique to 2-stage processes

Acknowledgement

United States Bureau of Reclamation

Los Angeles Department of Water and Power

- LBWD Staff:
 - Diem Vuong, Assistant General Manager
 - Dr. Robert Cheng, Director of Water Quality
 - Matt Lyons, Manager of Planning
 - Tai Tseng, Senior Civil Engineer